
Bilkent University

Department of Computer Engineering

Senior Design Project

T2334

PaperAtlas

Final Report

Ahmet Hakan Yılmaz - 21803399

Akın Kutlu - 21803504

Aybala Karakaya - 21801630

Selbi Ereshova - 21901326

Zehra Erdem - 21801977

Supervisor: Uğur Doğrusöz

Jury Members: Erhan Dolak and Tağmaç Topal

19.05.2023

This report is submitted to the Department of Computer Engineering of Bilkent University in partial

fulfillment of the requirements of the Senior Design Project course CS491/2.

Contents

1. Introduction.. 3
2. Requirements Details.. 3

2.1. Functional Requirements.. 3
2.2 Non Functional Requirements..4

2.2.1 Performance..4
2.2.2 Usability...4
2.2.3 Maintainability..4
2.2.4 Scalability.. 4

2.3 Pseudo Requirements..5
2.3.1 Implementation Constraints...5
2.3.2 Data Constraints..5
2.3.3 Cost Constraints..5
2.3..4 License Constraints..5
2.3..5 Schedule Constraints... 5

3. Final Architecture and Design Details... 5
3.1 Overview.. 5
3.2 Subsystem Decomposition...6
3.3 Hardware/Software Mapping..8
3.4 Persistent Data Management...8
3.5 Boundary Conditions.. 11
3.6 Subsystem Services...12
3.7 Class Diagram..14

4. Development/Implementation Details.. 16
4.1 Backend... 16
4.2 Frontend... 17
4.3 Database.. 17

5. Test Cases and Results... 18
6. Maintenance Plan and Details...42
7. Other Project Elements... 42

7.1 Consideration of Various Factors in Engineering Design....................................42
7.2 Ethics and Professional Responsibilities.. 44
7.3. Teamwork Details.. 44

7.3.1. Contributing and functioning effectively on the team..45
7.3.2. Helping creating a collaborative and inclusive environment.............................46
7.3.3. Taking lead role and sharing leadership on the team.......................................47
7.3.4. Meeting objectives..48

7.4 New Knowledge Acquired and Applied..48
8. Conclusion and Future Work.. 49
9. User manual..49

9.1 Search.. 49
9.2 Node Details...51

1

9.3 Filter... 55
9.4 Canvas - Layout... 55
9.5 Downloading and Uploading.. 57
9.6 Finding Common Papers..59

10. Glossary..61
11. References.. 62

2

1.Introduction
Paper Atlas is a web application available on all modern web browsers. Paper

Atlas shows the papers as nodes with edges specifying which one references which

one and which one is being referenced by which. In this way, the project enhances

the way academicians and students conduct their research by providing a better way

to find papers that best match their research topic by showing the relation of papers.

The user is able to read the details such as name,study areas, and abstract by

clicking on the node of a paper. A link to the original paper is available as well. The

graph is interactive; in other words, the users can move the nodes around, zoom in

and out, apply layouts, and highlight nodes. Users can filter their results by time

interval, study area and citation amount. Users can also search authors instead of

paper titles. In this case, relative nodes will be shown for authors. The sizes of nodes

within the graphs change according to their influence.

2. Requirements Details

2.1. Functional Requirements

● Viewing papers, authors and their relations as an interactive graph.

● Applying different kinds of layout to the graph.

● Searching papers by their titles and viewing the results.

● Searching the authors by their names and viewing the results.

● Creating a new graph from selected search results.

● Merging selected search results to the current graph.

● Bringing references or citations of the selected papers within a chosen

distance after search.

● Bringing papers of a selected author to the graph.

● Bringing authors of a selected paper to the graph.

● Bringing references of a selected paper to the graph.

● Bringing citations of a selected paper to the graph.

● Finding common references of more than one selected papers.

● Finding common citations of more than one selected papers.

● Finding common papers of more than one selected authors.

3

● Removing nodes from the graph.

● Applying time filter to the papers in the graph

● Applying field areas filter with ”and” and “or” options to papers in the graph.

● Applying citation count filter to the papers in the graph.

● Pinning nodes so that they will not be eliminated by any filter.

● Downloading the current graph.

● Uploading a graph.

2.2 Non Functional Requirements

2.2.1 Performance

The response time for the application besides running layout and retrieving a

graph from the database should not be more than 30 milliseconds. But since a graph

can be very large, running layouts and retrieving such graphs from the database can

take longer but should not exceed 30 seconds.

2.2.2 Usability

The user interface of the application should be user friendly. Everyone using

the application should be able to understand how to handle functionalities of the

application. As the application is based on graph visualization, graphs should have

interactive design for everyone to use it easily.

2.2.3 Maintainability

To be able to maintain the application, the code should be easy to read and

map with requirements so that when changes are required it will be easy to locate

them. The code should be written in a way to separate different tasks into different

modules so that functions can be modified without affecting each other too much and

new functions can be added easily to maintain an application over time.

2.2.4 Scalability

The application must be able to handle 10000 users at the same time.

Moreover, as the initial goal of the application is to provide services for specific

4

topics, the application should be able to continue to function if it is decided to provide

services for other topics.

2.3 Pseudo Requirements

2.3.1 Implementation Constraints

Node.js framework is used for the implementation of backend with Javascript.

Cytoscape.js library is used for visualization of the graphs. Neo4j which is a graph

database is used to store information. Cypher is used for graph query language.

Response time is less than 30 seconds.

2.3.2 Data Constraints

Publicly published papers are used as data. Publicly accessible information of

papers such as author, title and abstract is stored and used.

2.3.3 Cost Constraints

To gather information about papers and authors, free APIs are used.

2.3..4 License Constraints

For all the used libraries, APIs and frameworks, The ones that their licenses

are appropriate for the project are used.

2.3..5 Schedule Constraints

Before the first semester ended, a prototype demo was done. Before 19 May

2023, the project was done.

3. Final Architecture and Design Details

3.1 Overview

In this section, the final architectural structure and design details of Paper

Atlas will be explained. Subsystems and their purposes and subsystem components

and their purposes will be explained. Paper Atlas follows a client-server architectural

5

pattern. In the client side there is Frontend Layer and in the backend layer there are

Backend layer, Database layer and Third Party API service. Most of the required

information for the Paper Atlas is stored in our Neo4j database. Client side sends

REST requests with required inputs from user to server. The connection between

server and database is provided with ODBC. Both the server and client sides are

deployed on render.com.

3.2 Subsystem Decomposition

Our system follows the client server architecture. In our client side we have

the frontend layer and in the server side we have the backend layer, one database

layer for the Feedback Database, one database layer for the Paper Author Database

and Third Party API. The whole system is composed of four main parts: Frontend

layer, Backend layer, Database layers and Third Party API.

In the Frontend layer we have UI components that the user will interact with in

order to use our application. Canvas UI is used to display the nodes and

relationships representation of the queries and searches the user makes. To bring

data to the Frontend layer the users can use Search UI and send a request to the

Backend layer. Users will be able to obtain the results of each node via Node detail

UI. They will also be able to filter the nodes and relationships on the Canvas UI via

interacting with Filter UI. The users are allowed to make changes to data in Canvas

UI while interacting with the Query UI as well.

In the Backend layer which is the connection between frontend and database

layer and third party api we have management components. The request

management is responsible for requests coming from frontend. Node and relation

management prepares the result for query in wanted format and when database or

api is needed, it communicates with necessary service. Database services have

access to database layers and third party API service can get data from third party

api.

We have two database layers.

One database layer contains only one component which is the Paper Author

Database. It is a graph type of database and a Neo4j database. All data related to

this project is in this database. Backend has a connection to the database.

6

The other database layer contains only one component which is the Feedback

Database. It is a Postgresql database. All data related to the feedback collected from

the users on our website is in this database. Backend has a connection to the

database.

The last part is a third party api. The backend has a direct connection to the

Semantic scholar api. This connection is used to get more detailed information for

papers such as abstract and access url.

Figure 3.2: Subsystem decomposition diagram

7

3.3 Hardware/Software Mapping

Figure 3.3: Hardware/Software Mapping

The paper and author information is stored in a Neo4j database. The server

performs Cypher queries on the database by connecting to it using ODBC. The

functions to create graphs are implemented on the server side. The client sends

REST requests to the server with the input it gets from the users to create the graphs

in the requested format.

The feedback information which is collected from the users on our website is

stored in a Postgresql database. The server performs SQL queries on the database

by connecting to it using ODBC. The functions to send and get feedback are

implemented on the server side. The client sends REST requests to the server with

the input it gets from the users to perform the requested operation.

The server and the client are deployed on render.com separately. The client

can be run on any web browser.

3.4 Persistent Data Management

The relations between nodes are important so our project requests a special

type of database: Graph Database. We decided to use Neo4j because it is open

source and it meets our needs. The data in our database downloaded from semantic

scholar. Before pushing the data, it was filtered. There are 2 types of nodes in our

database: Author and Paper. There are 2 types of relations: a-reference-of and

an-author-of.

8

https://render.com/

Number of nodes and relations in the Graph database

Author nodes: 339857 Paper nodes: 71900 Total nodes: 411757

a-reference-of relations:

75155

an-author-of relations:

449376

Total relations:

524531

The schemes of nodes and relations

Paper
citationCount

venue

journalName

uniqueFieldsOfStudies

year

publicationTypes

acl

title

dblp

journalPages

url

mag

pubmed

referenceCount

arXiv

influentialCitaitonCount

journalVolume

isOpenAccess

pubMedCentral

9

publicationDate

paperId

doi

Author

citationCount

aliases

paperCount

orcids

name

affiliations

hindex

authorId

url

dblps

homepage

an-author-of

identity

start (authorId)

end (paperId)

type

a-reference-of

identity

start (paperId)

end (paperId)

type

10

We also have another database to store the feedback gotten from our users:

Feedback Database. We decided to use Postgresql because it was enough for us to

be able to perform SQL queries. There are 1 type of data in this database:

Feedback. Its fields are given below.

Feedback

id

name

surname

point

message

mail

3.5 Boundary Conditions

Paper Atlas has three types of boundary conditions which are initialization,

termination, failure.

Initialization:

Users should have an internet connection to use Paper Atlas. Paper Atlas can

be used from any device which has an Internet connection. Since Paper Atlas does

not have login and registration cases any user with internet connection can use

PaperAtlas. For the best experience a computer should be used as its screen is the

most suitable for graph visualization.

Termination:

Closing the web page or going to another web page terminates Paper Atlas.

Failure:

If Internet connection is cut while in using the Paper Atlas network failure can

occur. There may be a need for some updates in the database as time passes.

11

During the updates, the database server can be down and data cannot be reached

by the server which would cause a failure.

3.6 Subsystem Services

Request Management

Within this module, the http requests from the frontend are received. The

necessary functions of the Node Management module are called. When the

response data is created by the Node Management module, it gets formatted and

sent as an http response.

Node and Relation Management

This module is where business logic happens. Within this module, functions

specific to requirements are implemented. This module calls the Database Service or

External API Service according to need and get wanted data. After that, business

logic is applied and the resulting data is processed into desired format.

Database Service

This module communicates with Database Servers. Within this module

queries that return desired data are written and run on the Neo4j Database Server

and Postgresql Server.

API Service

This module communicates with any third party APIs. For the time being,

Scholar API is needed to retrieve some data. Therefore, this module is responsible

for retrieving data from the Scholar API.

Canvas

Canvas is the component where the graph is displayed and nodes are

displayed visually. From the nodes on the graph new nodes and edges can be

merged. In this situation new requests are sent to the backend layer. If wanted,

nodes and edges can be deleted from the canvas. Elements of the graph can be

moved within the canvas as well.

Search

12

Search component is the component where users can search for authors and

papers. As a result of searching new requests are sent to the backend layer to bring

the new information for the canvas.

Layout Picker

Layout Picker component enables users to select the layout of the graph from

a list of predefined graph layouts. When a layout is chosen, it will be applied to the

graph in Canvas.

Options

Options component is the component that enables users to do different tasks

such as finding common ones or uploading and downloading of the graph.

Filter

Filter component enables users to apply different filters to the graph in the

Canvas.The filtering is done in the frontend layer. Some examples of available filters

are filter by time,citation amount, and by topics.

Node details

When a node in the canvas is clicked, the Node Details component displays

the details of a node. Details of nodes are brought from our database and the

semantic scholar api via backend layer as in our database all details of nodes are

not stored.

13

3.7 Class Diagram

Figure 3.7: Class Diagram

14

Graph

The graph class is the main part of the project and it is for the representation

of the whole graph. It basically consists of edge and node objects. In order to control

and change the graph, layout property is used.

Node

Node is a representative class for nodes in a graph. It has a nodeable

instance to keep data. It also has coordinates to keep the position of the node in the

graph. It also has color and size attributes which can be set according to the

information in the nodeable attribute.

Edge

Edge is a representative class for directed edges in a graph. Therefore, it

hase source and target attributes. It also has type attributes since it is required to

use different types of edges between different kinds of nodes.

Nodeable

Nodeable class is an interface which is inherited by Author and Article

classes. Those classes are the classes which can be represented as a node in

Paper Atlas.

Author

Author class is for the representation of the authors of articles in our

database. It has citationCount, aliases, paperCount, orchids, name, affiliations,

hindex, authorId, url, dblps and homepage properties. It has SearchAuthor() and

GetPapersOfAuthor() functions.

Paper

The purpose of this class is to create a respective class Paper for Paper

nodes in our graph database. This class has the same properties and variables as

the Paper node in the database. This class also implements relevant methods for the

Paper node such as getting authors of the article, finding references of the article or

finding referred papers or both, searching for an article, finding papers within a given

15

distance in terms of referring them or being referred by them or both, finding papers

commonly referred or referred by.

Feedback

The purpose of this class is to be able to store the feedback taken from the

users in the Postgresql database so that we can access them easily. “id” property is

the id of the feedback. “name” and “surname” properties store the name and the

surname of the user who created the feedback. “point” property stores how many

points are given to the feedback. “message” property stores the feedback message.

“email” property is the email of the user who created the feedback.

4. Development/Implementation Details

4.1 Backend

In the backend we use Node.js along with axios.js library.

We have a structure to divide the logic of our backend between the endpoints,

database controllers, Cypher queries and data models.

server.js - in this file we have all our endpoints, calling respective controller

functions.

database-controllers.js - in this file we have all our controller functions called by the
endpoints. The controller calls functions from basic-queries.js to get respective

Cypher queries. The database controller runs the queries using the axios library. The

results of these queries are processed in controllers as well before being back

passed to endpoints.

basic-queries.js - in this file we are creating all our Cypher queries necessary for

retrieving data from our Neo4j database. Each controller in the database-controller

calls a respective function in this file to return a query in string format. We decided to

have these queries in a separate file to reduce the complexity of the files and since

the queries can be really long in length.

models.js - in this file we have the data model for the Feedback object.
.env - in this file we store all the necessary credentials to connect to our local, cloud

databases.

16

By separating the code into many different files we ensured the maintainability

of our code and made sure we followed standards by many developers and

organizations.

4.2 Frontend

In the frontend we use React as it is easy to implement and can support many

other technologies we may implement. We tried to break down the whole page to

smaller components to make implementation easier. We have typescript files for

each of the components we create in the user interface. In React you can update a

constant value by using useState hook. Each component was able to preserve the

state of their own variables, however, we needed to update our graph elements from

different components. Because of that we stored our graph elements in the main

component that renders other small components such as Node Detail, Search and

Filter. Whenever an update was needed for the graph from a rendered component,

we wrote the updating functions to the main component and sent it down to the

needed components by using props. Therefore, we were able to manage elements

from one place and were able to preserve their states.

We also use “react-cytoscapejs” library to be able to use Cytoscape. Cytoscape

is to visualize a graph with styles. The library makes it able to render a Cytoscape

Component. We used this component and its attributes such as stylesheet to show

our graph. We used Material UI for the components such as buttons, a slider, select,

drawer or input labels to give them more style and to have more user friendly

interfaces.

4.3 Database

Neo4j (Paper Author DB):

In the first implementation of the project, an online neo4j database was

chosen because we wanted to create only one database and all team members had

access to the same database. There are lots of limitations of this online neo4j

database: maximum number of nodes and relation. Also, uploading was hard for bulk

data. In the next stages of the project, we created another neo4j database. This one

is a local database and we expanded our database approximately 3 times easily. We

17

created copies of our database and contents to back up. This version allowed us to

create a database much bigger in a shorter time. For example, in the first version,

there are only 2 types of papers in the database and the new version has all 23

types of paper. For each version, the data is downloaded from Semantic Scholar and

formatted in order to upload our database successfully.

Postgresql (Feedback DB)

In the first design of the project, there was no Postgresql database. However,

in order to collect user feedback, we needed a SQL database. We created an online

Postgresql database on supabase.com. The only purpose of this database is

feedback.

5. Test Cases and Results

Every test case has a unique ID and name. What is the purpose of the test

case is explained in the Summary. Post procedure and procedure of the test cases

and expected results are written. Every test case has a category and security result.

There are two main categories which are Functional and Nonfunctional.

Nonfunctional ones have different sub categories which are Performance to test

mainly time performance of the application, Reliability to test correctness of the

application and Usability to test whether necessary messages are given to the user

or the thing makes it easier to use application. There are three kinds of severity

which are critical to emphasize these cases are very crucial for the application to

work, major to emphasize important cases and minor to emphasize that they do not

have several effects on the application.

18

Table 5: Test Cases

Test IDs Test case
name

Summary Post Procedure Procedure Expected Result Category Severit
y
Result

Test results

T01 Searching

papers

Testing if we

get list of

papers when

searching for

papers

- Search different

keywords when

search type is

Paper

There should a list

of papers or a pop

up indicating that

there are no such

paper

Functional

testing

Critical Pass

T02 Searching

authors

Testing if we

get list of

authors when

searching for

authors

-. Search different

keywords when

search type is

Author

There should a list

of authors or a pop

up indicating that

there are no such

author

Functional

testing

Critical Pass

T03 Check if

layout

works

Testing if the

layouts runs

when we

choose different

layout types

Have at least 5

nodes and 2

edges in the

canvas

Choose a layout

option from the

layout dropdown

The respective

layout should be

applied to the graph

in the canvas

Functional

testing

Minor Pass

19

T04 Check if

download

works

Testing if

downloading

graphs works

Have at least 1

node in the

canvas

Click the

download button.

A JSON file should

be downloaded.

Functional

testing

Major Pass

T05 Check if

uploading

a file

works

Testing if

uploading a

JSON file

works.

- Choose a JSON

file from the

computer and

upload it to the

canvas using the

“Upload file”

button

The user should be

shown a warning if

the file is not JSON

format or the

corresponding

graph should be

show in the canvas

Functional

testing Major

Pass

T06 Check if

merging

new

nodes

works

Testing if

merging newly

searched nodes

to existing

graph works

There should be

at least one

node in the

canvas. The

search should

not be an empty

result.

Search for a new

node. Choose

some of them

from the list.

Choose “Merge to

Graph” click the

“Add” button.

The new nodes

should be added to

the existing graph

in the canvas.

Functional

testing

Major Pass

T07 Check if

starting a

new graph

works

Testing if a new

graph starts

when choosing

to add the

The search

should not be an

empty result.

Search for a new

node. Choose

some of them

from the list.

The old graph

should be removed

from the canvas

and the new nodes

Functional

testing

Minor Pass

20

newly searched

nodes to a new

graph.

Choose “Start a

Graph” click the

“Add” button.

and their edges

should be added.

T08 Check if

bring

reference

s works

when

adding

new

nodes

Testing if

brining

references of

newly searched

nodes work

when adding

them to the

canvas

There should be

nodes that have

references in

result list

Search for a new

node. Choose

some of them

from the list.

Choose

“References” and

choose distance

from drop down.

Click the “ADD”

button.

The references of

the selected nodes

should also be

added to the

canvas as paper

nodes.

Functional

testing

Major Pass

21

T09 Check if

bring

citations

works

when

adding

new

nodes

Testing if

brining papers

that refer of

newly searched

nodes work

when adding

them to the

canvas

There should be

nodes that have

citations in result

list

Search for a new

node. Choose

some of them

from the list.

Choose

“Citations” and

choose distance

from drop down.

Click the “ADD”

button.

The referring

papers of the

selected nodes

should also be

added to the

canvas as paper

nodes.

Functional

testing

Major Pass

T10 Checking

if getting

node

detail

works.

Test if we get

the node details

when we click

on it

There must be at

least one paper

and at least one

author node in

the canvas.

Click on the node

on the canvas.

The node details of

the selected nodes

should be shown in

the “Node detail”

tab of the drawer.

Functional

testing

Critical Pass

T11 Checking

if getting

Testing if

getting the

There must be at

least one author

Click on an author

node. Click on the

The papers of the

selected author

Functional

testing

Critical Pass

22

papers of

author

works

papers of the

author node

works

node in the

canvas.

“Papers” button. should be added to

the canvas as

paper nodes also

the edges between

these paper nodes

and the selected

author nodes

should be added.

T12 Checking

if

removing

author

node

works

Testing if

removing the

selected author

node works

There must be at

least one author

node in the

canvas.

Click on an author

node. Click on the

“Remove” button.

The selected author

node should be

removed from the

canvas.

Functional

testing

Major Pass

T13 Checking

if pinning

author

node

works

Testing if

pinning author

node works

There must be at

least one author

node in the

canvas.

Click on an author

node. Click on the

“Pin” button.

The selected author

node should be

pinned. When a

filter is applied it

should not affect

this pinned node.

Functional

testing

Major Pass

23

T14 Checking

if getting

reference

s of paper

node

works

Testing if

getting

references of

selected paper

node works

There must be at

least one paper

node in the

canvas.

Click on a paper

node. Click on the

“References”

button.

The references of

the selected paper

node should be

added to the

canvas as paper

nodes along with

the edges between

them.

Functional

testing

Critical Pass

T15 Checking

if getting

citations

of paper

node

works

Testing if

getting citations

of selected

paper node

works

There must be at

least one paper

node in the

canvas.

Click on a paper

node. Click on the

“Citations” button.

The citation of the

selected paper

node should be

added to the

canvas as paper

nodes along with

the edges between

them.

Functional

testing

Critical Pass

T16 Checking

if getting

authors of

chosen

Testing if

getting authors

of selected

paper node

works

There must be at

least one paper

node in the

canvas.

Click on a paper

node. Click on the

“Authors” button.

The authors of the

selected paper

node should be

added to the

canvas as author

Functional

testing

Critical Pass

24

paper

works

nodes along with

the edges between

them.

T17 Check if

removing

a paper

node

works

Testing if

removing the

selected paper

node from the

canvas works

There must be at

least one paper

node in the

canvas.

Click on a paper

node. Click on the

“Remove” button.

The selected paper

node should be

removed from the

canvas.

Functional

testing

Major Pass

T18 Checking

if pinning

a paper

node

works

Testing if

pinning a paper

node works

The database

must be running

too.There must

be at least one

paper node in

the canvas.

Click on a paper

node. Click on the

“Pin” button.

The selected paper

node should be

pinned. When a

filter is applied it

should not affect

this pinned node.

Functional

testing

Major Pass

T19 Check if

time filter

works

Testing of the

time filter works

on the Paper

nodes existing

in the canvas

Have at least 3

nodes in the

canvas

Move the two

endpoints around

to test different

time intervals.

The canvas should

only display Paper

nodes published

within the given

time interval.

Functional

testing

Major Pass

25

T20 Checking

if filter by

area

works

(and

option)

Testing if filter

by area works

real time for

paper nodes

when the the

filter option is

“and”

There must be at

least one paper

node in the

canvas.

Click on the Filter

tab in the drawer.

choose “and”

option from

switch. Choose

areas of study to

consider by

clicking on the

keywords.

The paper nodes in

the canvas should

only be paper

nodes who have all

the selected area

of study

Functional

testing

Major Pass

T21 Checking

if filter by

area

works (or

option)

Testing if filter

by area works

real time for

paper nodes

when the the

filter option is

“or”

There must be at

least one paper

node in the

canvas.

Click on the Filter

tab in the drawer.

choose “or” option

from switch.

Choose areas of

study to consider

by clicking on the

keywords.

The paper nodes in

the canvas should

only be paper

nodes who have at

least one of the

selected area of

study

Functional

testing

Major Pass

T22 Check if

filter by

citation

Testing if filter

by citation

count works for

paper nodes

There must be at

least one paper

node in the

canvas.

Click on the Filter

tab in the drawer.

Write min and

max number of

The paper nodes in

the canvas should

only be paper

nodes with citation

Functional

testing

Major Pass

26

count

works

citation counts in

the respective text

fields. Click on

“Filter” button

count within the

given range.

T23 Check if

bring

common

reference

s of

selected

nodes

work

Testing if

bringing

common

references of

selected nodes

work

There must be at

least 2 paper

nodes in the

canvas.

Click on the “Find

Common” button

above the canvas.

Select some

paper nodes.

Click on “Bring

references” button

The common

referenced papers

of the selected

papers should be

added to the

canvas as paper

nodes along with

the edges between

the selected node

and new nodes.

Functional

testing

Critical Pass

T24 Check if

bring

common

referring

papers of

selected

Testing if

bringing

common

referring papers

of selected

nodes work

There must be at

least 2 paper

nodes in the

canvas.

Click on the “Find

Common” button

above the canvas.

Select some

paper nodes.

Click on “Bring

referring papers”

The common

referring papers of

the selected papers

should be added to

the canvas as

paper nodes along

with the edges

Functional

testing

Critical Pass

27

nodes

work

button between the

selected node and

new nodes.

T25 Check if

bring

common

paper of

selected

author

nodes

work

Testing if

bringing

common paper

of selected

author nodes

work

There must be at

least 2 author

nodes in the

canvas.

Click on the “Find

Common” button

above the canvas.

Select some

author nodes.

Click on “Bring

common papers”

button

The common

papers of the

selected authors

should be added to

the canvas as

paper nodes along

with the edges

between the

selected author

node and new

paper nodes.

Functional

testing

Critical Pass

T26 Performan

ce of

author

search

Test the

performance of

search for

author names.

Make sure there

are at least 50

author names or

aliases that

contain the same

string which has

Chooses Author

as the search

type

Enter the string to

search.

The results should

be shown within 2

seconds

Performance Major
Pass

(1+1+2+2+1

)ms/5 =

1.4ms

28

more than three

characters in the

database.

See the results.

T27 Performan

ce of

paper

search

Test the

performance of

search for

paper titles.

Make sure there

are at least 50

paper titles that

contain the same

string which has

more than three

characters in the

database.

Choose Paper as

the search type.

Enter the string to

search.

See the results.

The results should

be shown within 2

seconds

Performance Major
Pass

(3+1+1+1+1

)ms/5 = 1.8

ms

T28 Performan

ce of

adding

new

nodes

from the

search

Test the

performance

when new

nodes and

edges are

added to

canvas

Make a search by

paper or author

Choose ten of

them from the

result

Click Add button

The new nodes and

their relations

should be added to

the canvas in 3

seconds.

Performance Major
Pass

(1 + 1.4 +

1.2 + 0.8 +

1.2)ms/5 =

1.12 ms

29

See that they are

added to canvas

with edges

T29 Performan

ce of

adding

reference

s of a

paper

Test the

performance

when

references of a

paper are

added

Have a canvas

with at least 20

nodes and at least

one them must be

a paper with two

references which

are not on the

canvas

Click on a paper

node

Click on the

References

button in Node

Detail

The three reference

papers should be

added to the

canvas with

connecting edges

in 2 seconds.

Performance Major
Pass

(1.3 + 1 +

1.2 + 1.2 +

1.1)ms/ 5 =

1.16 ms

T30 Performan

ce of

adding

citations

of a paper

Test the

performance

when citations

of a paper are

added

Have a canvas

with at least 20

nodes and at least

one them must be

paper with three

citations which are

not on the canvas

Click on the paper

node

Click on the

Citations button in

Node Detail

The three citation

papers should be

added to the

canvas with

connecting edges

in 2 seconds.

Performance Major
Pass

(1.2 + 1.3 +

1.3 + 1 +

1.2)ms/5 =

1.2 ms

30

T31 Performan

ce of

adding

authors of

a paper

Test the

performance

when authors of

a paper are

added

Have a canvas

with at least 20

nodes and at least

one them must be

a paper with three

authors which are

not on the canvas

Click on the paper

node

Click on the

Authors button in

Node Detail

The three authors

of the paper should

be added to the

canvas with

connecting edges

in 2 seconds.

Performance Major
Pass

(1 + 1.3 +

1.3 + 1.3 +

1.5)ms/5 =

1.28ms

T32 Performan

ce of

adding

papers of

an author

Test the

performance

when papers of

an author are

added

Have a canvas

with at least 20

nodes and at least

one them must be

an author with two

papers which are

not on the canvas

Click on the

author node

Click on the

Papers button in

Node Detail

The two papers of

the author should

be added to the

canvas with

connecting edges

in 2 seconds.

Performance Major
Pass

(1.3 + 1.3 +

1.2 + 0.9 +

1.1)ms/5 =

1.16 ms

T33 Performan

ce of

finding

common

reference

s

Test the

performance

when finding

common

references

Have a canvas

with at least 20

nodes and at least

three of them must

be paper that have

a common

Click Find

Common Button

Select the three

papers

The common

reference paper

should be added to

the canvas with

connecting edges

in 2 seconds.

Performance Major
Pass

(1.2 + 1.1 +

1.2 + 1.1 +

1.1)ms/5 =

1.14 ms

31

reference which is

not on the canvas Click on

References

Button

T34 Performan

ce of

finding

common

citations

Test the

performance

when finding

common

citations

Have a canvas

with at least 20

nodes and at least

three of them must

be paper that have

a common citation

which is not on the

canvas

Click Find

Common Button

Select the three

papers

Click on Citations

Button

The common

citation paper

should be added to

the canvas with

connecting edges

in 2 seconds.

Performance Major
Pass

(1.3 + 1.1 +

1.4 + 1.2+

1.1)ms/5 =

1.22ms

T35 Performan

ce of

finding

common

papers

Test the

performance

when finding

common

papers

Have a canvas

with at least 20

nodes and at least

three of them must

be author that

have a common

paper which is not

on the canvas

Click Find

Common Button

Select the three

authors

Click on Papers

Button

The common paper

of three authors

should be added to

the canvas with

connecting edges

Performance Major
Pass

(1.1 + 1.4 +

1.2 + 1.4 +

1.1)ms/5 =

1.24ms

32

T36 Performan

ce of

Layout

Test the

performance of

applying the

layout

Make sure there

are 100 nodes on

the canvas

Apply

Cose-Bilkent

layout

Apply Cola layout

Apply Dagre

layout

Apply Klay layout

Apply Eular layout

Every layout should

be applied within 5

seconds

Performance Major
Pass

(2 + 4 + 1.5

+ 1.5 +

2.3)ms/5 =

2.26ms

T37 Performan

ce of Filter

Test the

performance of

applying filters

Make sure there

are 100 nodes on

the canvas

Select a start time

as a filter

Select a start and

end time as a

filter

Select a topic for

filter

After every

selection for filter,

the filter should be

applied within 0.5

second

Performance Minor
Pass

(0.3 + 0.5 +

0.4 + 0.4 +

0.7)ms/5 =

0.46ms

33

Select second

topic for filter

Make “and” “or”

T38 Performan

ce of

Node

Details

Test the

performance of

showing details

of a node

Make sure there

are 100 nodes on

the canvas and at

least one of time is

author and

another one is

paper

Click on an author

node

See the details of

the node

Click on a paper

node

See the details of

the node

After clicking on a

node, details

should be shown

within 0.5 seconds

Performance Major
Pass

(1+1+1+1+1

)ms/5 = 1ms

T39 Performan

ce of the

interactivit

y of the

Canvas

Test the

interactivity of

the Canvas

Make sure there

are 100 nodes and

at least 100 edges

on the canvas

Hold and move a

node that has at

least two edges

The nodes should

move with no

delays.

Performance Minor
Pass

(1+1+1+1+1

)ms/5=(1ms

)

34

T40 Performan

ce of

Downloadi

ng

Canvas

Test the

performance of

downloading

the canvas

Make sure there

are 100 nodes and

50 edges on the

canvas

Click the

download button

The time between

clicking the button

and starting to

download should

not be more than 2

seconds

Performance Minor
Pass

(2.9 + 1.5

+1.1+ 2.5+

0.9)ms/5

=1.78 ms

T41 Performan

ce of

Uploading

Canvas

Test the

performance of

uploading the

canvas

Make sure there is

a downloaded

canvas with 100

nodes and 50

edges

Click on the

upload canvas

button

Select the already

downloaded

canvas

Click on the

upload button

The canvas should

be constructed

within 5 second

Performance Minor
Pass

(1.3+1.29+1

.19+2.3+2.2

5)ms/5

=1.66 ms

T42 Correct

Edges

Test whether

nodes are

connected

correctly

Make sure there is

a canvas that

includes both

kinds of nodes

and edges

Check the papers

to see whether

the author and

reference-of

The data provided

by canvas should

be correct

Reliability Critical
Pass

35

edges are shown

correctly in the

canvas

T43 Correct

Node

Details

Test the shown

detail about a

node is correct

Make sure to have

a graph that has

both kinds of

nodes

Click on both

kinds of nodes

Check the shown

details of the

node are really

the details of

clicked node

Details and the

clicked node should

match

Reliability Critical
Pass

T44 Correct

Queries

Test the queries

for a node are

correct

Make sure there

are both kinds of

nodes on the

canvas

Click on a paper

node

Run the query

options

Click on an author

node

Run the query

options

The results of

running queries are

correct

Reliability Critical
Pass

36

T45 Correct

Query

options

Test the queries

for a node are

correct

Make sure there

are both kinds of

nodes on the

canvas

Click on a paper

node

Run the query

options

Click on an author

node

Run the query

options

When clicking on

different kinds of

nodes, query

options differ

according to that

Reliability Major
Pass

T46 Download Test whether

download

button works

fine

When there is no

nodes and edges

on the canvas try

to click on

download button

When there are

both nodes and

edges try to click

on download

button

When there is no

nodes and edges,

an alert should be

shown

When there are

edges and nodes

the canvas should

be downloaded

without any alert

Usability Minor
Pass

37

T47 Upload Test whether

upload button

works fine

When the canvas

is empty, the

upload button is

clicked.

When the canvas

is not empty, the

upload button is

clicked.

When the canvas

empty, upload

button should work

without an alert

When the canvas is

not empty, a

confirmation

message should

be shown since the

nodes in the

canvas will be lost

Usability Minor
Pass

T48 Search

String

Length

Test that a

search can be

done with at

least three

characters

Enter only one

character and try

to click the search

button.

Enter only two

characters and try

to click the search

button.

For the first two

trials, the button

should not be

clickable. For the

last trial, the button

should be clickable

Usability Minor
Pass

38

Enter only three

character and try

to click search

button

T49
Select All

Button

Testing if all the

nodes in the

search result

list are selected

when “Select

all” button is

clicked

Make a search

and have at least

five results

Select at least two

results

Click Select All

button

All the items in the

search result list

should be selected

Usability Minor
Pass

T50
Selecting

None

Button

Testing if none

of the nodes in

the search

result list are

not selected

when “Select

none” button is

clicked

Make a search

and have at least

five results

Select at least two

results

Click Select Nonw

button

All the items in the

search result list

should be

unselected

Usability Minor
Pass

39

T51 Clickable

Add

Button

Test the add

button after

search

Make a search

and have a list of

results.

Not select any

node from the

search list and try

to click the add

button.

Select at least

one node from the

list and click on

add button

For the first trail,

add button should

not be clickable, for

the second trial, the

add button should

work fine and

nodes should be

added to canvas

Usability Minor
Pass

T52 Time Filter Test the time

filter

Canvas has more

than one paper

nodes

Choose a start

time. Click the

filter button.

Choose an end

time that is after

the start time.

Click the filter

button.

Delete start time.

Apart from the last

trial, the filter button

should work fine.

For the last trial, it

should nat be

allowed that start

time is after the end

time.

Usability Major
Pass

40

Click the filter

button.

Choose a new

start time that is

after end time.

Click the filter

button.

T53 Clickable

URLs

Test the URLs

in node details

are clickable

Have a canvas

with some paper

and author nodes

Click on the

nodes.

Click on the URLs

in node details.

Another section for

the clicked URL

should be opened.

Usability Minor
Pass

41

6. Maintenance Plan and Details
In our codebase, the endpoint, function, and variable names are descriptive

and easy to understand. Additionally, the code is written in a way to separate

different tasks into different modules so that functions can be modified without

affecting each other too much and new functions can be added easily to maintain an

application over time. Therefore, if at any point we get new developers, they would

be able to contribute to the project fairly easily as it would not be very challenging for

them to understand the codebase. This is one aspect of maintainability.

We will also monitor the feedback given on our website and the issues

opened on the Github repository of the project to learn about the bugs once a week.

Then, we will fix the bugs.

7. Other Project Elements

7.1 Consideration of Various Factors in Engineering Design

Public Health: PaperAtlas may help medical researchers make more efficient

research and thus contribute to the overall public health.

Public Safety: PaperAtlas does not directly affect the safety of its users.
Public Welfare: PaperAtlas does not directly affect the welfare of its users.
Global Factors: PaperAtlas is planned to be a software used by people all around

the world. However, people speak many different languages all around the globe.

Considering that most people that browse the internet speak English, having the

interface in English allows people from different countries to access the software.

Cultural Factors: PaperAtlas may affect the privacy of researchers by making it

easier for adversaries to collect data about the researcher’s career. These privacy

issues were taken into consideration while building this application.

Social Factors: PaperAtlas may reveal academic groups that gain credit by only

citing each other's papers. These groups are also known as academic clans.

PaperAtlas may put the social status of such academics at risk.

42

Environmental: PaperAtlas is a web application, and may not have a direct effect

on the environment.

Economic: PaperAtlas does not directly affect the economical situation of its users.

Table 7.1: Factors that can affect analysis and design

Effect level Effect

Public health 2 Can help medical research

Public safety 0 -

Public welfare 0 -

Global factors 2 Interface should be in English

Cultural factors 5 Privacy and Data Protection

Social factors 8 Risk of exposing academic

dishonesty

Environmental 0 -

Economical 0 -

43

7.2 Ethics and Professional Responsibilities

While we were developing Paper Atlas we gave importance to ethics and

professional responsibilities. Every member of the Paper Atlas team was respectful

and helpful to each other throughout the year. Each member of the Paper Atlas

team fulfilled the responsibility given to them to implement the application and each

member helped each other when there was help needed. Paper Atlas does not use

any cookies to collect any information from its users. Also, Paper Atlas does not

collect and use any personal data from its users. Therefore it does not share any

information with third parties. As a research tool, our main responsibility is to give

correct information about papers and authors. We got our papers from Semantic

Scholar which is a reliable source with more than 200 million papers. If there is a

piece of false information or an author does not want his publicly available paper to

be included in Paper Atlas, we are open to making needed changes. In addition, it is

our professional responsibility to allow users to understand how the application is

used. So we tried to make it user-friendly and we tried to explain Paper Atlas to

users in the manual.

7.3. Teamwork Details
After forming our group each team member was assigned a project

management task accordingly:

Ahmet Hakan Yılmaz - Managing the project repository and deadlines.
Akın Kutlu - communication with external factors. For example, contacting third

party contributors.

Aybala Karakaya - Arranging purposeful meetings and keeping track of time.
Selbi Ereshova - Keeping a track of reports to work on.
Zehra Erdem - Managing the project and checking on work done.

This distribution of responsibility allowed us to overcome many difficulties we

had to sustain the team and achieve high quality work. Such division of work

eliminated any possible miscommunication and misconduct during the team work.

However, dividing the responsibilities does not mean that the members were not

44

responsible for other parts of the project. The purpose of such division was to guide

the team to successfully manage the responsibilities.

Google drive collaboration tool was being used to share the project reports

among the team members and allow interaction between us. We were also using

Visual Paradigm to simultaneously work on diagrams of our project. Furthermore,

GitHub Git tool was used to share the codebase among the team members and keep

track of code commits each member makes.

7.3.1. Contributing and functioning effectively on the team
The key ingredient in any team success is the culture of the team. We as a

team have been together for more than 1 year and we have built very effective team

dynamics which we leverage in our senior design project also. Therefore, so far

every member has been making a significant contribution and playing an important

role in the project.

Ahmet Hakan Yılmaz:
Hakan made great contributions in managing the necessary repositories and

keeping our report web page up to date. Apart from management roles, Hakan

developed the responsive and user friendly frontend of our project along with Zehra

and Selbi. He worked really hard to build the logic of the frontend. He made great

contributions by ensuring the smooth flow of our user interface.

Akın Kutlu:
Akın has done a great job in communicating with the external sources of our

project such as third party organization. Akın has reached out to ScholarAPI and

persuaded them to give us access to all their data. With Akın’s hard work we have

more than enough data in our database. He also managed the database by writing

scripts to batch process the data in our database. He also contributed to the backend

side of the project along with Aybala and Selbi. He also managed to create a bigger

database so that we have more connected nodes in our Neo4j database.

Aybala Karakaya:
Aybala did a great job in arranging purposeful meetings and making sure we

are making meaningful progress throughout the meetings. She also contributed in

developing the backend of our application along with Akın and Selbi. She had made

significant contributions in building the endpoints of our system and writing optimized

Cypher queries.

45

Selbi Ereshova
Selbi made great contributions by keeping track of the upcoming reports and

ensuring correct formalization and submission of our reports. She was also part of

the backend team along with Aybala and Akın. Selbi made great progress in writing

endpoints and Cypher queries to retrieve the necessary data from our database and

pass it to our frontend. She also contributed to developing better UI for our project

along with Hakan and Zehra.

Zehra Erdem:
Zehra did a great job in managing the team progress and making sure

everyone is making enough progress. She was also part of the frontend team and

had been working with Hakan and Selbi to build a responsive and scalable user

interface for our project.

7.3.2. Helping creating a collaborative and inclusive environment
To ensure a collaborative environment, we made use of Zoom meetings,

face-to-face meetings, Google Drive, GitHub and WhatsApp. The Zoom meetings

and face-to-face meetings helped us to collaborate synchronously, Google Drive and

GitHub asynchronously, and WhatsApp was helpful in both.

For all assignments, we performed work division under the leadership of

Zehra Erdem. Therefore, every assignment was completed with collaboration.

Additionally, when dividing the work, we sometimes assigned one task to more than

one team member. This helped us complete those tasks by collaboration. When

someone on the team has trouble working on the task, they asked for help on our

WhatsApp group. Then, other team members helped them either on WhatsApp, by

arranging a Zoom call or a face-to-face meeting.

To create an inclusive environment, we always supported each other by

answering each others’ questions, motivating other team members, and by being

respectful in communication.

The summary of every team members’ distinct role in helping creating a

collaborative and inclusive environment is as follows:

Ahmet Hakan Yılmaz:
He created the project repository which is a key component of our coding

collaboration. Also, while managing the deadlines he was mindful of the team

members’ other commitments which helped us create an inclusive environment.

46

Akın Kutlu:
He led the data collection and database creation. While doing so, he was a

respectful lead who made sure every team member felt included. He also worked

mostly independently while communicating with third parties, such as the managers

of Semantic Scholar API. During this task, he periodically informed the group of the

progression of the work and asked for help and support when he needed it which

helped us to get collaboration.

Aybala Karakaya:
She arranged and runed the meetings we have regularly and that was a key

factor in having collaboration. While running the meetings, she made sure that

everyone gets an opportunity to speak which helped us get an inclusive

environment.

Selbi Ereshova:
She kept a track of reports to work on. To do this, she created Google Docs

files which we store on Google Drive. That gived us the opportunity to easily

collaborate asynchronously. Additionally, while leading the work for First Demo, she

was an inclusive lead.

Zehra Erdem:
She managed the project and checked on the work done. Since she also led

the process of work division, we were able to collaborate easily. When dividing the

work, she made sure that everyone gets an equal chance to work on impactful tasks.

Therefore, she helped us obtain an inclusive environment.

7.3.3. Taking lead role and sharing leadership on the team
Team members shared leadership on the team by taking on the lead role in

different tasks. This was done in order to let every team member learn how to take

the responsibility of a whole team. The tasks that every team member was

responsible for is as the following:

Ahmet Hakan Yılmaz: Detailed Design Report
Akın Kutlu: Collecting Data
Aybala Karakaya: Final Report
Selbi Ereshova: First Demo, Final Demo
Zehra Erdem: Project Specification Report, Analysis and Requirement Report

47

7.3.4. Meeting objectives
As we progressed through our project some of our objectives changed since

the data we acquired was different then what we initially expected. Paper nodes in

our database do not include journal attributes. That is why we removed grouping by

journal functionality from our objectives. The same situation applies to searching by

journal and university since none of these attributes were present in the dataset we

found.

Also, we realized that having keywords as nodes alongside Paper and Author

makes the UI more complicated to understand. That is why we decided to keep the

keywords for filtering purposes only.

However we did implement many other new features such as real time

filtering papers by keywords, citation count, pinning nodes, bringing authors of

papers, bringing papers of authors, bringing cited papers of a paper, bringing

references of a paper, bringing referred and cited authors of an author, uploading

and downloading files.

In terms of non-functional requirements, we have reached all of our

objectives. In terms of project goals, we exceeded our expectations.

7.4 New Knowledge Acquired and Applied

While developing Paper Atlas we learned and applied different technologies

or frameworks. With some of the frameworks we had an experience but we got more

experience such as Javascript, Typescript, and NodeJs. We also used Express.js

within our Node.js application. For the frontend, we used React and learned about

React hooks and component libraries such as Material UI. Most of the team did not

know about graph databases or libraries at first. Therefore we learned about

graph-based databases and libraries that can help us in graph visualization. We

used Neo4j as a database management system which is a Graph Data Platform.

Neo4j is a noSQL database system and we also used Cypher which is the language

for the database. Another framework related to graphs we use is Cytoscape.js which

allows us to work on graphs. We also used APIs for fetching some of our data from

Semantşc Scholar.

48

8. Conclusion and Future Work
In conclusion, we have developed Paper Atlas which is a web application that

visualizes various graphs including academic papers, authors and relations between

academic papers. We believe that Paper Atlas could be a very helpful tool for people

who want to do research about a topic by guiding its users. With the power of data

visualization, Paper Atlas allows users to gain valuable insights into the connections

between papers and authors. Moreover, interactivity of the Paper Atlas allows users

to navigate the graph, filter data, and explore specific connections of interest.

Although Paper Atlas has 400000 papers, it is still a small number compared

to all papers included in Semantic Scholar. One of the future works is to enhance the

current specific dataset to a larger scope. Another future work can be adding a

register login system. Then people’s graph history can be stored and people who

want to see their history can see. Last future work can be adding more

personalization to Paper Atlas. Users may choose the color theme of Paper Atlas or

the color theme of their graphs, or they may arrange a size algorithm for nodes.

9. User manual

9.1 Search

The user can open search by clicking the arrow at the top of right corner and

clicking on Search. There are two types of search which are Paper and Author. The

user can choose between them as in Figure 9.1.1. If Paper is chosen, the user can

enter a keyword to search among paper titles or if Author is chosen, the user can

enter the keyword to search among author names. The result will be shown after

clicking the Search button in pages. The user can navigate between pages by

clicking the numbers or the arrows that are at the end of the list (Figure 9.1.2). The

user can manually select some results and can use Select All or Select None

buttons. If none of the results are chosen, the Add button will be unclickable (Figure

9.1.2). Before adding selected results, both paper and author search have options

which are “Merge to the graph” and “Start a graph” (Figure 9.1.2 and 9.1.3). If users

want to keep nodes on the graph and add new ones over them, they should click

49

Merge. If users want to start a new graph with selected results they can choose the

Start option. The default option is Merge. After choosing the option and selecting

some results the user can click the Add button to add selected results to the graph

as nodes.

For paper type of search, there is an additional part as can be seen in Figure

9.1.3 If the user wants, they can bring citations of selected papers, references of

selected papers or both of them as well by choosing References and Citations

options. By entering a number as distance, the user can decide how far citations or

references will be brought with selected ones.

Figure 9.1.1: Search Types

Figure 9.1.2: Author Type of Search

50

Figure 9.1.3: Paper Type of Search

9.2 Node Details

When a user clicks a node the node details tab on the right side of the page is

opened. In this node details tab; if the node is an author then the name of the author,

aliases of the author, paper count, and citation count are displayed. For author nodes

in the node details tab, besides the given information there are 3 buttons; the papers

button brings papers written by the selected author to the graph, the remove button

removes the node, and the pin button pins the node and filters does not affect pinned

nodes.

51

Figure 9.2.1: Node Details of an Author at the right side of page.

Figure 9.2.2: Node Details of an Author

52

If the node is a paper then the title, publication year, doi of the paper, fields of

the paper, a link to the paper, and abstract of the paper are displayed. For paper

nodes in the node details tab, besides given information there are 5 buttons, the

references button brings papers that are referenced by the source node, the citation

button brings papers that refer to the source node and the authors button brings

authors of the source paper. The remove button removes the selected node and the

pin button pins the node and filters can not affect the pinned node.

Figure 9.2.3: Node Details of a Paper at the right side of the page.

53

Figure 9.2.4: Node Details of a Paper

54

9.3 Filter
There are three types of filters: publish year, area, and citation count. The

user can filter the nodes on the graph except pinned nodes. The pinned nodes do

not affected by any of the filters. The user can change the start and end year with a

time filter and the papers which publish the year between the start and end year will

be shown. In filter by area, there are hard-coded areas as buttons and the user can

select one or more of them at the same time. Also, the user can change the toggle

(OR and AND). According to this toggle button, areas will be filtered. The last filter is

citation count. The user can write a min and max number of citation count and press

apply the filter to eliminate nodes whose citation count is not in between min and

max numbers. The filters can be applied together or individually.

Figure 9.3: Filter By Area Example

9.4 Canvas - Layout
On the graph page, users change the layout of the graph as they like. There

are several options for layout: Cola, Cose Bilkent, Dagre, Euler, and Klay. Each one

provides a different look and can be useful for different graphs. In order to change

the layout, the user can use the layout drop-down menu. Changing layout does not

affect filters or pinned nodes, it only changes the location of them. In the canvas,

users can interact with author and paper nodes. These nodes can be moved to

another place and the related nodes will be still connected.

55

Figure 9.4.1: Layout selection example

Figure 9.4.2: After layout changed example

56

9.5 Downloading and Uploading
Users can choose to download their graph as a JSON file so they can reuse it

later. To do this they can click on the Download button above the canvas.

Figure 9.5.1: Downloading the graph in the canvas

When the user clicks “Download”, if the graph is empty they will get an alert

warning saying that they cannot download an empty graph:

Users can upload a previously downloaded JSON file to the application by clicking

the “Upload file” button above the canvas.

57

Figure 9.5.2: Uploading a graph to the canvas

The user can choose a file from their computer:

Figure 9.5.3: Choose a file to upload as a graph to the canvas

Before the user can upload the file, our app checks if the file is in JSON

format. If not an alert is shown to the user saying “Wrong Format! Please upload

JSON files only” and the file is not uploaded to our application.

58

Also, if there are any nodes present in the canvas, then a pop up is shown asking

the user if they are sure they want to replace the current graph with the new

uploaded one.

9.6 Finding Common Papers
Users can find common references of some papers they choose, the common

papers that are referring some papers they choose, or the common papers of the

chosen authors.

Figure 9.6.1: Before Finding Commons

To do that, they must first click on the “Find Common” button”. Then,

“Common References”, “Common Citations” and “Common Papers of Authors”

buttons will be displayed. “Common References” brings the common papers that the

input papers are referencing. “Common Citations” brings the common papers that

are referencing the input papers. “Common Papers of Authors” brings the common

papers of the input authors.

nodes they want to find a common property of. Then, they must click on the.

59

Figure 9.6.2: After Clicking the Find Common

After clicking the “Find Common” button, users must click on the nodes they

want to find a common property of. The chosen nodes are displayed in dark blue.

When the user clicks on a node to find common properties, it becomes dark blue.

Then, they should choose the common property they want to see by clicking on one

of the “Common References”, “Common Citations” and “Common Papers of Authors”

buttons.

Figure 9.6.3: Selecting Nodes to Find Commons

60

10. Glossary
Semantic Scholar: It is a platform that helps researchers quickly find papers in their

field, it includes features such as personalized recommendations, and filtering

options to help users explore and understand the research landscape. Semantic

Scholar includes more than 200 million papers [1]. We used semantic scholar to fill

our database and scholar api to show some details of papers like abstract.

Neo4j: It is a graph database management system that stores and manages the

data in the form of a graph [2]. We used Neo4j as the database system management

as we store our data in the graph form.

Cypher: Cypher is a graph query language for Neo4j [3]. We use Cypher on the

backend to perform queries on our database.

React.Js: React is a framework that uses node to build user interfaces. Javascript

and Typescript can be used in React. Components of React return a renderable

object [4]. It is used for frontend implementation.

Cytoscape.js: Cytoscape.js is an open-source JavaScript library for creating and

visualizing graphs and networks. Cytoscape.js enable users to create and

manipulate graphs in a web browser environment [5]. It is used in the frontend to

create Canvas.

Canvas: Canvas is used for the rectangular area in the UI that shows all nodes and

edges.

61

11. References
[1] “AI-Powered Research Tool,” Semantic Scholar, https://www.semanticscholar.org/
(accessed May 10, 2023).

[2] “Neo4j graph database & analytics – the leader in graph databases,” Graph
Database & Analytics, https://neo4j.com/ (accessed May 10, 2023).

[3] “Cypher query language - developer guides,” Neo4j Graph Data Platform,
https://neo4j.com/developer/cypher/ (accessed May 10, 2023).

[4] React, https://react.dev/ (accessed May 10, 2023).

[5] M. Franz, Cytoscape.js, https://js.cytoscape.org/ (accessed May 10, 2023).

62

