
Bilkent University

Department of Computer Engineering

Senior Design Project

T2334

PaperAtlas

Detailed Design Report

Ahmet Hakan Yılmaz - 21803399

Akın Kutlu - 21803504

Aybala Karakaya - 21801630

Selbi Ereshova - 21901326

Zehra Erdem - 21801977

Supervisor: Uğur Doğrusöz

Jury Members: Erhan Dolak and Tağmaç Topal

13.03.2023

This report is submitted to the Department of Computer Engineering of Bilkent University in partial

fulfillment of the requirements of the Senior Design Project course CS491/2.



Contents

1. Introduction 3
1.1 Purpose of the System 3
1.2 Design Goals 3

1.2.1 Performance 3
1.2.2 Usability 3
1.2.3 Maintainability 3
1.2.4 Scalability 4

1.3 Definitions, Acronyms and Abbreviations 4
1.4 Overview 4

2. Alternative Software’s Architectures 5
3. Proposed Software Architecture 6

3.1 Overview 6
3.2 Subsystem Decomposition 6
3.3 Hardware/Software Mapping 8
3.4 Persistent Data Management 8
3.5 Boundary Conditions 10

4. Subsystem Services 11
5. Class Diagram 14
6. Test Cases 17
7. Consideration of Various Factors in Engineering Design 39
8. Teamwork Details 40

8.1 Contributing and functioning effectively on the team 41
8.2 Helping creating a collaborative and inclusive environment 42
8.3 Taking lead role and sharing leadership on the team 43

9. References 44

2



1. Introduction

1.1 Purpose of the System

With Paper Atlas, users can visualize the relations of research papers or

authors as a graph-based and interactive structure in order to find the most relevant

paper to their topic. The goal of this project is to enhance the way academicians and

students conduct their research by providing a better way to find papers that best

match their research topic by showing the relation of papers related to the input

paper of the user.

1.2 Design Goals

1.2.1 Performance

The response time for the application besides running layout and retrieving a

graph from the database should not be more than 30 milliseconds. But since a graph

can be very large, running layouts and retrieving such graphs from the database can

take longer but should not exceed 30 seconds.

1.2.2 Usability

The user interface of the application should be user friendly. Everyone using

the application should be able to understand how to handle functionalities of the

application. As the application is based on graph visualization, graphs should have

interactive design for everyone to use it easily.

1.2.3 Maintainability

To be able to maintain the application, the code should be easy to read and

map with requirements so that when changes are required it will be easy to locate

them. The code should be written in a way to separate different tasks into different

modules so that functions can be modified without affecting each other too much and

new functions can be added easily to maintain an application over time.

3



1.2.4 Scalability

The application must be able to handle 10000 users at the same time.

Moreover, as the initial goal of the application is to provide services for a specific

topic, the application should be able to continue to function if it is decided to provide

services for other topics.

1.3 Definitions, Acronyms and Abbreviations

Semantic Scholar: It is a platform that helps researchers quickly find papers in their

field, it includes features such as personalized recommendations, and filtering

options to help users explore and understand the research landscape. Semantic

Scholar includes more than 200 million papers. We used semantic scholar to fill our

database. We also aim to use semantic scholar api to show some details of papers

like abstract.

Neo4j: It is a graph database management system that stores and manages the

data in the form of a graph. We use Neo4j as the database system management as

we store our data in the graph form.

Cytoscape.js: Cytoscape.js is an open-source JavaScript library for creating and

visualizing graphs and networks. Cytoscape.js enable users to create and

manipulate graphs in a web browser environment.

Cypher: Cypher is a graph query language for Neo4j. We use Cypher on the

backend to perform queries on our database.

1.4 Overview

Paper Atlas will be a web application available on all modern web browsers.

Paper Atlas will show the papers as nodes with edges specifying which one

references which one and which one is being referenced by which. In this way, the

project will enhance the way academicians and students conduct their research by

providing a better way to find papers that best match their research topic by showing

the relation of papers. The users will be able to read the details such as

4



name,keywords, and abstract by clicking on the node of a paper. A link to the original

paper will be available as well. The graph will be interactive; in other words, the

users can move the nodes around, zoom in and out, apply layouts, and highlight

nodes. Users can filter their results by time interval, keywords, author, and

publication journal. Users can also search authors or keywords instead of paper

titles. In this case, relative nodes will be shown for authors or keywords. The

application will also provide extended features such as grouping of the nodes and

ranking papers by their importance.

2. Alternative Software’s Architectures

2.1 Google Scholar

Google Scholar [1] is one of the most known websites to search for academic

papers and academic people. It is only available on the internet and there is no

mobile version of it. Users can search papers in different languages. In the advanced

search part, papers can be searched with several detailed options such as “with all

of the words”, “with the exact phrase” and “with at least one of the words”. Also,

articles can be filtered as “authored by”, “published in” and “dated between”. The

results are listed and accessible to the user. Users can also look at their profile,

library, alerts, metrics, and settings.

2.2 Litmaps

Litmaps [2] is another website to search for academic papers and visualize

results. It also uses graphs to visualize the graphs. Within Litmaps, only papers are

used as nodes. New papers can be added to the graph or can be deleted from the

graph but the graph is not interactive. The positions of the nodes are fixed. Though

reference relations are shown with edges, they do not have directions so it is hard to

understand which one refers to the other one. Litmaps also uses filters which are

depth, date range and keyword.

5



3. Proposed Software Architecture

3.1 Overview

In this section, the architectural structure of Paper Atlas will be explained.

Subsystems and their purposes and subsystem components and their purposes will

be explained. Paper Atlas follows a client-server architectural pattern. In the client

side there is Frontend Layer and in the backend layer there are Backend layer,

Database layer and Third Party API service. Most of the required information for the

Paper Atlas is stored in our Neo4j database. Client side sends REST requests with

required inputs from user to server. The connection between server and database is

provided with ODBC. Both the server and client sides are deployed on render.com.

3.2 Subsystem Decomposition

Our system follows the client server architecture. In our client side we have

the frontend layer and in the server side we have the backend layer, database layer

and Third Party API. The whole system is composed of four main parts: Frontend

layer, Backend layer, Database layer and Third Party API.

In the Frontend layer we have UI components that the user will interact with in

order to use our application. Canvas UI is used to display the nodes and

relationships representation of the queries and searches the user makes. To bring

data to the Frontend layer the users can use Search UI and send a request to the

Backend layer. Users will be able to obtain the results of each node via Node detail

UI. They will also be able to filter the nodes and relationships on the Canvas UI via

interacting with Filter UI. The users are allowed to make changes to data in Canvas

UI while interacting with the Query UI as well.

In the Backend layer which is the connection between frontend and database

layer and third party api we have management components. The request

management is responsible for request comes from frontend.Node and relation

management prepares the result for query in wanted format and when database or

api is needed, it communicates with necessary service.Database service has access

to database layer and third party api service can get data from third party api.

6



Database layer contains only one component which is the Paper Author

Database. It is a graph type of database and a Neo4j database. All data related to

this project is in this database. Backend has a connection to the database.

The last part is a third party api. The backend has a direct connection to the

Semantic scholar api. This connection is used to get more detailed information for

papers such as abstract and access url.

Figure 3.2: Subsystem decomposition diagram

7



3.3 Hardware/Software Mapping

Figure 3.3: Hardware/Software Mapping

The paper and author information is stored in a Neo4j database. The server

performs Cypher queries on the database by connecting to it using ODBC. The

functions to create graphs are implemented on the server side. The client sends

REST requests to the server with the input it gets from the users to create the graphs

in the requested format. The server and the client are deployed on render.com

separately. The client can be run on any web browser.

3.4 Persistent Data Management

The relations between nodes are important so our project requests a special

type of database: Graph Database. We decided to use Neo4j because it is open

source and it meets our needs. The data in our database downloaded from semantic

scholar. Before pushing the data, it was filtered. There are 2 types of nodes in our

database: Author and Paper. There are 2 types of relations: a-reference-of and

an-author-of.

Number of nodes and relations in our database

Author nodes: 339857 Paper nodes: 71900 Total nodes: 411757

a-reference-of relations:

75155

an-author-of relations:

449376

Total relations:

524531

8

https://render.com/


The schemes of nodes and relations

Paper
citationCount

venue

journalName

uniqueFieldsOfStudies

year

publicationTypes

acl

title

dblp

journalPages

url

mag

pubmed

referenceCount

arXiv

influentialCitaitonCount

journalVolume

isOpenAccess

pubMedCentral

publicationDate

paperId

doi

Author

citationCount

aliases

paperCount

9



orcids

name

affiliations

hindex

authorId

url

dblps

homepage

an-author-of

identity

start (authorId)

end (paperId)

type

a-reference-of

identity

start (paperId)

end (paperId)

type

Feedback

id

name

surname

point

message

mail

10



3.5 Boundary Conditions

Paper Atlas has three types of boundary conditions which are initialization,

termination, failure.

Initialization:

Users should have an internet connection to use Paper Atlas. Paper Atlas can

be used from any device which has an Internet connection. Since Paper Atlas does

not have login and registration cases any user with internet connection can use

PaperAtlas. For the best experience a computer should be used as its screen is the

most suitable for graph visualization.

Termination:

Closing the web page or going to another web page terminates Paper Atlas.

Failure:

If Internet connection is cut while in using the Paper Atlas network failure can

occur. There may be a need for some updates in the database as time passes.

During the updates, the database server can be down and data cannot be reached

by the server which would cause a failure.

4. Subsystem Services
Request Management

Within this module, the http requests from the frontend will be received. The

necessary functions of the Node Management module will be called. When the

response data is created by the Node Management module, it will be formatted and

sent as an http response.

Node and Relation Management

This module will be where business logic happens. Within this module,

functions specific to requirements will be implemented. This module will call

Database Service or External API Service according to need and get wanted data.

11



After that, business logic will be applied and the resulting data will be processed into

desired format.

Database Service

This module will communicate with Database Server. Within this module

queries that will return desired data will be written and run on the Neo4j Database

Server.

API Service

This module will communicate with any third party APIs. For the time being,

Scholar API is needed to retrieve some data. Therefore, this module will be

responsible for retrieving data from the Scholar API.

Log Service

This module will be responsible for tracking the events in the backend layer. It

will create and write logs of each event so that when an error occurs, these logs can

be used to trace back and find what went wrong.

Canvas

Canvas is the component where the graph is displayed and nodes are

displayed visually. From the nodes on the graph new nodes and edges can be

merged. In this situation new requests are sent to the backend layer. If wanted,

nodes and edges can be deleted from the canvas. Elements of the graph can be

moved within the canvas as well.

Search

Search component is the component where users can search for authors and

papers. As a result of searching new requests are sent to the backend layer to bring

the new information for the canvas.

Layout Picker

12



Layout Picker component enables users to select the layout of the graph from

a list of predefined graph layouts. When a layout is chosen, it will be applied to the

graph in Canvas.

Queries

Queries component is the component that enables users to enhance the

graph from nodes of the graph. For example, with the queries component users can

bring references of a node in a graph.

Filter

Filter component enables users to apply different filters to the graph in the

Canvas.The filtering is done in the frontend layer. Some examples of available filters

are filter by time, by journal, by author, and by topics.

Node details

When a node in the canvas is clicked, Node Details component displays the

details of a node. Details of nodes are brought from our database and the semantic

scholar api via backend layer as in our database all details of nodes are not stored.

13



5. Class Diagram

Figure 5: Class Diagram

14



Graph

The graph class is the main part of the project and it is for the representation

of the whole graph. It basically consists of edge and node objects. In order to control

and change the graph, layout property is used.

Node

Node is a representative class for nodes in a graph. It has a nodeable

instance to keep data. It also has coordinates to keep the position of the node in the

graph. It also has color and size attributes which can be set according to the

information in the nodeable attribute.

Edge

Edge is a representative class for directed edges in a graph. Therefore, it

hase source and target attributes. It also has type attributes since it is required to

use different type of edges between different kinds of nodes.

Nodeable

Nodeable class is an interface which is inherited by Author, Article and

Journal classes. Those classes are the classes which can be represented as a node

in Paper Atlas.

Author

Author class is for the representation of the authors of articles in our

database. It has id, name ,googleScholarId, authorURL and articles properties.

Article

The purpose of this class is to create a respective class Article for Paper

nodes in our graph database. This class has the same properties and variables as

the Paper node in the database. This class also implements relevant methods for the

Paper node such for getting authors of the article, finding references of the article,

and finding referred papers.

15



Journal

The purpose of this class is to be able to store journal information in the

database so that we can filter articles easily in a given journal. This class has a

“name” property as a string and “publishedArticles” property as an array of Article

objects. “name” is the name of the journal and “publishedArticles” is the articles

published in that journal. This class also implements a method to return articles

published in that journal.

Keyword

The purpose of this class is to be able to store available keywords in the

database so that we can filter articles easily based on related keywords. This class

has a “keyword” property as a string and “articles” property as an array of Article

objects. “keyword” is the keyword related to that object and “articles” is the articles

which are related to that keyword. This class also implements a method to return

articles with that keyword.

16



6. Test Cases
Table 6: Test Cases

Test ID Test case
name

Summary Post
Procedure

Procedure of
testing

Expected
result

Category Severity result

1 Database

connectivity

Testing if the

backend is

successfully

connected to

the database

Make a dummy

query to the

database when

deploying the

application.

It is expected

that the query

to the database

should not

cause any error

Integration

testing

Major

2 Input check for

getPaperName

s function

Testing if valid

string is given

as a name

input for

getPaperName

s endpoint

The application

is connected to

our database.

There are at

least 50 papers

in our database

The

getPaperName

s endpoint will

be called with

the “name”

parameter.

The input name

should be a

valid string

Functional

testing

Minor

3 Output check

for

Testing if the

output of the

The application

is connected to

The

getPaperName

The output of

the query

Functional

testing

Major

17



getPaperName

s function

getPaperName

s query

our database.

There are at

least 50 papers

in our

database.

s endpoint will

call a controller

to send a query

to the

database.

should not be

an error.

4 Input check for

getAuthorNam

es function

Testing if the

input name of

the

getAuthorNam

es endpoint is

a valid string

The application

is connected to

our database.

There are at

least 50

authors in our

database.

The

getAuthorNam

es will be

called with the

“name”

parameter.

The input:

name of the

getAuthor

endpoint

should be a

valid string

Functional

testing

Minor

5 Output check

for

getAuthorNam

es function

Testing if the

output of the

searchByAutho

r query return

an error

The application

is connected to

our database.

There are at

least 50

authors in our

database.

The

getAuthorNam

es endpoint will

call a controller

to send a query

to the

database.

The output of

the

searchByAutho

r query should

not return an

error

Functional

testing

Major

18



Input check for

getNeighbor

function

Testing if valid

string is given

as a name

input for

getNeighbor

endpoint

The application

is connected to

our database.

There are at

least 50

authors and at

least 50 papers

in our

database.

The

getNeighbor

endpoint will be

called with

“limit” and

“name”

parameters.

The input name

should be a

valid string

Functional

testing

Minor

6 Input check for

getNeighbor

function

Testing if valid

number is

given as a

length limit

input for

getNeighbor

endpoint

The application

is connected to

our database.

There are at

least 50

authors and at

least 50 papers

in our

database.

The

getNeighbor

endpoint will be

called with

“limit” and

“name”

parameters.

The input

length limit

input should be

a valid number

Functional

testing Minor

7 Output check

for getNeighbor

function

Testing if the

output of the

getNeighborOf

The application

is connected to

our database.

The

getNeighbor

endpoint will

The output of

getNeighborOf

Paper should

Functional

testing

Major

19



Paper query is

an error

There are at

least 50

authors and at

least 50 papers

in our

database.

call a controller

to send a query

to the

database.

not be an error

8 Input check for

GetPapers

endpoint

Testing if valid

list of integers

is given as an

input for

GetPapers

endpoint

The application

is connected to

our database.

There are at

least 50 papers

in our

database.

The GetPapers

endpoint will be

called with a

list of ids as a

parameter.

The input list if

ids should be a

valid array.

Functional

testing

Minor

9 Input check for

GetPapers

endpoint

Testing if the

inputs for

GetPapers

endpoint are a

valid id in our

database.

The application

is connected to

our database.

There are at

least 50 papers

in our

database.

The GetPapers

endpoint will be

called with an

id as a

parameter.

The input ids

should be valid

paper ids in our

database.

Functional

testing

Minor

20



10 Output check

for GetPapers

endpoint

Testing if the

output of the

GetPapers

query is an

error

The application

is connected to

our database.

There are at

least 50 papers

in our

database.

The GetPapers

endpoint will

call a controller

to send a query

to the

database.

The output of

GetPapers

should not be

an error

Functional

testing

Major

11 Input check for

GetAuthors

endpoint

Testing if valid

list of integers

is given as an

input for

GetAuthors

endpoint

The application

is connected to

our database.

There are at

least 50

authors in our

database.

The

GetAuthors

endpoint will be

called with a

list of ids as a

parameter.

The input list if

ids should be a

valid array.

Functional

testing

Minor

12 Input check for

GetAuthors

endpoint

Testing if the

inputs for

GetAuthors

endpoint are a

valid id in our

database.

The application

is connected to

our database.

There are at

least 50

authors in our

database.

The

GetAuthors

endpoint will be

called with an

id as a

parameter.

The input ids

should be valid

author ids in

our database.

Functional

testing

Minor

21



13 Output check

for GetAuthors

endpoint

Testing if the

output of the

GetAuthors

query is an

error

The application

is connected to

our database.

There are at

least 50

authors in our

database

The

GetAuthors

endpoint will

call a controller

to send a query

to the

database.

The output of

GetAuthors

should not be

an error

Functional

testing

Major

14 Input check for

getReferences

endpoint

Testing if valid

integer is given

as an input for

getReferences

endpoint

The application

is connected to

our database.

There are at

least 50 papers

and 25

reference-of

relations in our

database

The

getReferences

endpoint will be

called with an

id as a

parameter.

The input ids

should be a

valid integer.

Functional

testing

Minor

15 Input check for

getReferences

endpoint

Testing if the

input for

getReferences

endpoint is a

valid id in our

The application

is connected to

our database.

There are at

least 50 papers

The

getReferences

endpoint will be

called with an

id as a

The input id

should be a

valid paper id

in our

database.

Functional

testing

Minor

22



database. and 25

reference-of

relations in our

database

parameter.

16 Output check

for

getReferences

endpoint

Testing if the

output of the

getReferences

query is an

error

The application

is connected to

our database.

There are at

least 50 papers

and 25

reference-of

relations in our

database

The

getReferences

endpoint will

call a controller

to send a query

to the

database.

The output of

getReferences

should not be

an error

Functional

testing

Major

17 Input check for

getReferred

endpoint

Testing if valid

integer is given

as an input for

getReferred

endpoint

The application

is connected to

our database.

There are at

least 50 papers

and 25

reference-of

relations in our

The

getReferred

endpoint will be

called with an

id as a

parameter.

The input ids

should be a

valid integer.

Functional

testing

Minor

23



database

18 Input check for

getReferred

endpoint

Testing if the

input for

getReferred

endpoint is a

valid id in our

database.

The application

is connected to

our database.

There are at

least 50 papers

and 25

reference-of

relations in our

database

The

getReferred

endpoint will be

called with an

id as a

parameter.

The input id

should be a

valid paper id

in our

database.

Functional

testing

Minor

19 Output check

for getReferred

endpoint

Testing if the

output of the

getReferred

query is an

error

The application

is connected to

our database.

There are at

least 50 papers

and 25

reference-of

relations in our

database

The

getReferred

endpoint will

call a controller

to send a query

to the

database.

The output of

getReferred

should not be

an error

Functional

testing

Major

24



20 Input check for

getAuthors

endpoint

Testing if valid

integer is given

as an input for

getAuthors

endpoint

The application

is connected to

our database.

There are at

least 50

papers, 50

authors and 25

author-of

relations in our

database

The getAuthors

endpoint will be

called with an

id as a

parameter.

The input ids

should be a

valid integer.

Functional

testing

Minor

21 Input check for

getAuthors

endpoint

Testing if the

input for

getAuthors

endpoint is a

valid id in our

database.

The application

is connected to

our database.

There are at

least 50

papers, 50

authors and 25

author-of

relations in our

database

The getAuthors

endpoint will be

called with an

id as a

parameter.

The input id

should be a

valid paper id

in our

database.

Functional

testing

Minor

25



22 Output check

for getAuthors

endpoint

Testing if the

output of the

getAuthors

query is an

error

The application

is connected to

our database.

There are at

least 50

papers, 50

authors and 25

author-of

relations in our

database

The getAuthors

endpoint will

call a controller

to send a query

to the

database.

The output of

getAuthors

should not be

an error

Functional

testing

Major

23 Input check for

getPapers

endpoint

Testing if valid

integer is given

as an input for

getPapers

endpoint

The application

is connected to

our database.

There are at

least 50

papers, 50

authors and 25

author-of

relations in our

database

The getPapers

endpoint will be

called with an

id as a

parameter.

The input ids

should be a

valid integer.

Functional

testing

Minor

26



24 Input check for

getPapers

endpoint

Testing if the

input for

getPapers

endpoint is a

valid id in our

database.

The application

is connected to

our database.

There are at

least 50

papers, 50

authors and 25

author-of

relations in our

database

The getPapers

endpoint will be

called with an

id as a

parameter.

The input id

should be a

valid author id

in our

database.

Functional

testing

Minor

25 Output check

for getPapers

endpoint

Testing if the

output of the

getPapers

query is an

error

The application

is connected to

our database.

There are at

least 50

papers, 50

authors and 25

author-of

relations in our

database

The getPapers

endpoint will

call a controller

to send a query

to the

database.

The output of

getPapers

should not be

an error

Functional

testing

Major

27



26 Input check for

getAuthorDetail

endpoint

Testing if the

input for

getAuthorDetail

endpoint is a

valid integer.

The third part

API should be

available and

there should be

at least 50

authors in our

database.

The

getAuthorDetail

endpoint will be

called with an

id as a

parameter.

The input id

should be a

valid integer.

Functional

testing

Minor

27 Input check for

getAuthorDetail

endpoint

Testing if the

input for

getAuthorDetail

endpoint is a

valid id in our

database.

The third part

API should be

available and

there should be

at least 50

authors in our

database.

The

getAuthorDetail

endpoint will be

called with an

id as a

parameter.

The input id

should be a

valid author id

in our

database.

Functional

testing

Minor

28 Output check

for

getAuthorDetail

endpoint

Testing if the

output for

getAuthorDetail

endpoint will

result in query

error.

The third part

API should be

available and

there should be

at least 50

authors in our

database.

The

getAuthorDetail

endpoint will

call a controller

which in turn

run a query in

our database.

The output of

the query run in

the database

should not

return an error.

Functional

testing

Major

28



29 Search

performance

for authors

Test the

performance of

search for

author names.

Make sure there

are at least 50

author names or

aliases that

contain the same

string which has

more than three

characters in the

database.

Chooses

Author as the

search type

Enter the string

to search.

See the results.

The results

should be

shown within 2

seconds

Performance Major

30 Search

performance

for papers

Test the

performance of

search for

paper titles.

Make sure there

are at least 50

paper titles that

contain the same

string which has

more than three

characters in the

database.

Choose Paper

as the search

type.

Enter the string

to search.

See the results.

The results

should be

shown within 2

seconds

Performance Major

29



31 Adding new

nodes from the

search

Test the

performance

when new

nodes and

edges are

added to

canvas

Make a search

by paper or

author

Choose five of

them from the

result

Click Add

button

See that they

are added to

canvas with

edges

The new nodes

and their

relations

should be

added to the

canvas in 10

seconds.

Performance Major

32 Layout Test the

performance of

applying the

layout

Make sure there

are 100 nodes

on the canvas

Apply

Cose-Bilkent

layout

Apply Cola

layout

Every layout

should be

applied within

10 seconds

Performance Major

30



Apply Dagre

layout

Apply Euler

layout

Apply Klay

layout

33 Filter Test the

performance of

applying filters

Make sure there

are 100 nodes

on the canvas

Select a start

time as a filter

Select a start

and end time

as a filter

Select a topic

for filter

After every

selection for

filter, the filter

should be

applied within

0.5 second

Performance Minor

34 Showing

details of a

Node

Test the

performance of

showing details

of a node

Make sure there

are 100 nodes

on the canvas

and at least one

of time is author

Click on an

author node

After clicking

on a node,

details should

be shown

Performance Major

31



and another one

is paper See the details

of the node

Click on a

paper node

See the details

of the node

within 0.5

seconds

35 The

interactivity of

the Canvas

Test the

interactivity of

the Canvas

Make sure there

are 100 nodes

and at least 100

edges on the

canvas

Hold and move

a node that has

at least two

edges

The nodes

should move

with no delays.

Performance Minor

36 Downloading

Canvas

Test the

performance of

downloading

the canvas

Make sure there

are 100 nodes

and 50 edges on

the canvas

Click the

download

button

The time

between

clicking the

button and

starting to

download

should not be

Performance Minor

32



more than 2

seconds

37 Uploading

Canvas

Test the

performance of

uploading the

canvas

Make sure there

is a downloaded

canvas with 100

nodes and 50

edges

Click on the

upload canvas

button

Select the

already

downloaded

canvas

Click on the

upload button

The canvas

should be

constructed

within 5 second

Performance Minor

38 Correct Edges Test whether

nodes are

connected

correctly

Make sure there

is a canvas that

includes both

kinds of nodes

and edges

Check the

papers to see

whether the

author and

reference-of

edges are

shown correctly

in the canvas

The data

provided by

canvas should

be correct

Reliability Critical

33



39 Correct Node

Details

Test the shown

detail about a

node is correct

Make sure to

have a graph

that has both

kinds of nodes

Click on both

kinds of nodes

Check the

shown details

of the node are

really the

details of

clicked node

Details and the

clicked node

should match

Reliability Critical

40 Correct

Queries

Test the

queries for a

node are

correct

Make sure there

are both kinds of

nodes on the

canvas

Click on a

paper node

Run the query

options

Click on an

author node

Run the query

options

The results of

running queries

are correct

Reliability Critical

34



41 Correct Query

options

Test the

queries for a

node are

correct

Make sure there

are both kinds of

nodes on the

canvas

Click on a

paper node

Run the query

options

Click on an

author node

Run the query

options

When clicking

on different

kinds of nodes,

query options

differ according

to that

UI Major

42 Download Test whether

download

button works

fine

When there is

no nodes and

edges on the

canvas try to

click on

download

button

When there are

both nodes and

edges try to

When there is

no nodes and

edges, a alert

should be

shown

When there are

edges and

nodes the

canvas should

be downloaded

UI Minor

35



click on

download

button

without any

alert

43 Upload Test whether

upload button

works fine

When the

canvas is

empty, the

upload button

is clicked.

When the

canvas is not

empty, the

upload button

is clicked.

When the

canvas empty,

upload button

should work

without an alert

When the

canvas is not

empty, a

confirmation

message

should be

shown since

the nodes in

canvas will be

lost

UI Minor

44 Search String

Length

Test that a

search can be

Enter only one

character and

For the first two

trials, the

UI Minor

36



done with at

least three

characters

try to click the

search button.

Enter only two

characters and

try to click the

search button.

Enter only

three character

and try to click

search button

button should

not be

clickable. For

the last trial,

the button

should be

clickable

45 Clickable Add

Button

Test the add

button after

search

Make a search

and have a list of

results.

Not select any

node from the

search list and

try to click the

add button.

Select at least

one node from

the list and

click on add

button

For the first

trail, add button

should not be

clickable, for

the second

trial, the add

button should

work fine and

nodes should

UI Minor

37



be added to

canvas

46 Select All and

Select Non

Options

Test select all

and select

none buttons

after a search

Make a search

and have at least

three results

Click select all

button

Click select

none button

Select at least

one result

Click select all

button

Unselect at

least one result

Click select

non button

After every

step the

selected nodes

should match

the expected

function of

select all and

select none

button

UI Major

47 Clickable Filter

Button

Test the

clickability of

the filter button

Canvas is empty. Make a search

and add a few

In the first trial,

the button

should be

UI Minor

38



according to

Canvas

nodes to the

canvas.

Choose at least

one filter.

Click on filter

button

Delete all

nodes from the

canvas

Click on filter

button

clickable and

works fine. In

the latter one

the button

should not be

clickable

48 Time Filter Test the time

filter

Canvas has

more than one

paper nodes

Choose a start

time. Click the

filter button.

Choose an end

time that is

after the start

time.

Apart from the

last trial, the

filter button

should work

fine. For the

last trial, an

alert message

should be

UI Major

39



Click the filter

button.

Delete start

time.

Click the filter

button.

Choose a new

start time that

is after end

time.

Click the filter

button.

shown to

indicate start

time cannot be

after the end

time.

49 Clickable Filter

Buttons

Test the

clickability of

the filter button

There are nodes

on the canvas
Not fill any filter

area (time,

journal name,

etc.)

Click the filter

button

When no area

is filled, an alert

should be

shown. When

at least one

area is filled,

UI Minor

40



Fill at least one

of the filter

area.

Click on the

filter button.

The filter button

should work

fine.

50 Clickable URLs Test the URLs

in node details

are clickable

Have a canvas

with some paper

and author

nodes

Click on the

nodes.

Click on the

URLs in node

details.

Another section

for the clicked

URL should be

opened.

UI Minor

41



7. Consideration of Various Factors in Engineering

Design

Public Health: PaperAtlas may help medical researchers make more efficient

research and thus contribute to the overall public health.

Public Safety: PaperAtlas does not directly affect the safety of its users.

Public Welfare: PaperAtlas does not directly affect the welfare of its users.

Global Factors: PaperAtlas is planned to be a software used by people all around

the world. However, people speak many different languages all around the globe.

Considering that most people that browse the internet speak English, having the

interface in English will allow people from different countries to access the software.

Cultural Factors: PaperAtlas may affect the privacy of researchers by making it

easier for adversaries to collect data about the researcher’s career. These privacy

issues should be taken into consideration while building this application.

Social Factors: PaperAtlas may reveal academic groups that gain credit by only

citing each other's papers. These groups are also known as academic clans.

PaperAtlas may put the social status of such academics at risk.

Environmental: PaperAtlas will be a web application, and will not have a direct

effect on the environment.

Economic: PaperAtlas does not directly affect the economical situation of its users.

Table 7: Factors that can affect analysis and design

Effect level Effect

Public health 2 Can help medical research

Public safety 0 -

42



Public welfare 0 -

Global factors 2 Interface should be in English

Cultural factors 5 Privacy and Data Protection

Social factors 8 Risk of exposing academic

dishonesty

Environmental 0 -

Economical 0 -

8. Teamwork Details
After forming our group each team member was assigned a project

management task accordingly:

Ahmet Hakan Yılmaz - Managing the project repository and deadlines.

Akın Kutlu - communication with external factors. For example, contacting third

party contributors.

Aybala Karakaya - Arranging purposeful meetings and keeping track of time.

Selbi Ereshova - Keeping a track of reports to work on.

Zehra Erdem - Managing the project and checking on work done.

This distribution of responsibility allows us to overcome many difficulties we

had and will have to sustain the team and achieve high quality work. Such division of

work eliminated any possible miscommunication and misconduct during the team

work. However, dividing the responsibilities does not mean that the members are not

43



responsible for other parts of the project. The purpose of such division is to guide the

team to successfully manage the responsibilities.

Google drive collaboration tool is being used to share the project reports

among the team members and allow interaction between us. We are also using

Visual Paradigm to simultaneously work on diagrams of our project. Furthermore,

GitHub Git tool is being used to share the codebase among the team members and

keep track of code commits each member makes.

8.1 Contributing and functioning effectively on the team

The key ingredient in any team success is the culture of the team. We as a

team have been together for more than 1 year and we have built very effective team

dynamics which we leverage in our senior design project also. Therefore, so far

every member has been making a significant contribution and playing an important

role in the project.

Ahmet Hakan Yılmaz:
Hakan is making great contributions in managing the necessary repositories

and keeping our report web page up to date. Apart from management roles, Hakan

is developing the responsive and user friendly frontend of our project along with

Zehra. He is making great contributions by ensuring the smooth flow of our user

interface.

Akın Kutlu:
Akın has done a great job in communicating with the external sources of our

project such as third party organization. Akın has reached out to ScholarAPI and

persuaded them to give us access to all their data. With Akın’s hard work we have

more than enough data in our database. He also manages the database by writing

scripts to batch process the data in our database. Currently, he is also contributing to

the backend side of the project along with Aybala and Selbi.

Aybala Karakaya:
Aybala is doing a great job in arranging purposeful meetings and making sure

we are making meaningful progress throughout the meetings. She is also

contributing in developing the backend of our application along with Akın and Selbi.

She has made significant contributions in building the endpoints of our system and

writing optimized Cypher queries.

44



Selbi Ereshova
Selbi is making great contributions by keeping track of the upcoming reports

and ensuring correct formalization and submission of our reports. She is also part of

the backend team along with Aybala and Akın. Selbi made great progress in writing

endpoints and Cypher queries to retrieve the necessary data from our database and

pass it to our frontend.

Zehra Erdem:
Zehra is doing a great job in managing the team progress and making sure

everyone is making enough progress. She is also part of the frontend team and has

been working with Hakan to build a responsive and scalable user interface for our

project.

8.2 Helping creating a collaborative and inclusive

environment

To ensure a collaborative environment, we are making use of Zoom meetings,

face-to-face meetings, Google Drive, GitHub and WhatsApp. The Zoom meetings

and face-to-face meetings help us to collaborate synchronously, Google Drive and

GitHub asynchronously, and WhatsApp is helpful in both.

For all assignments, we perform work division under the leadership of Zehra

Erdem. Therefore, every assignment is completed with collaboration. Additionally,

when dividing the work, we sometimes assign one task to more than one team

member. This helps us complete those tasks by collaboration. When someone on

the team has trouble when working on the task, they ask for help on our WhatsApp

group. Then, other team members help them either on WhatsApp, by arranging a

Zoom call or a face-to-face meeting.

To create an inclusive environment, we always support each other by

answering each others’ questions, motivating other team members, and by being

respectful in communication.

The summary of every team members’ distinct role in helping creating a

collaborative and inclusive environment is as follows:

Ahmet Hakan Yılmaz:

45



He created the project repository which is a key component of our coding

collaboration. Also, while managing the deadlines he is mindful of the team

members’ other commitments which help us create an inclusive environment.

Akın Kutlu:
He led the data collection and database creation. While doing so, he was a

respectful lead who made sure every team member felt included. He also worked

mostly independently while communicating with third parties, such as the managers

of Semantic Scholar API. During this task, he periodically informed the group of the

progression of the work and asked for help and support when he needed it which

helped us to get collaboration.

Aybala Karakaya:
She arranges and runs the meetings we have regularly and that is a key

factor in having collaboration. While running the meetings, she makes sure that

everyone gets an opportunity to speak which helps us get an inclusive environment.

Selbi Ereshova:
She keeps a track of reports to work on. To do this, she creates Google Docs

files which we store on Google Drive. That gives us the opportunity to easily

collaborate asynchronously. Additionally, while leading the work for First Demo, she

was an inclusive lead.

Zehra Erdem:
She manages the project and checks on the work done. Since she also leads

the process of work division, we are able to collaborate easily. When dividing the

work, she makes sure that everyone gets an equal chance to work on impactful

tasks. Therefore, she helps us obtain an inclusive environment.

8.3 Taking lead role and sharing leadership on the team

Team members share leadership on the team by taking on the lead role in

different tasks. This is done in order to let every team member learn how to take the

responsibility of a whole team. The tasks that every team member is responsible for

is as the following:

Ahmet Hakan Yılmaz: Detailed Design Report

Akın Kutlu: Collecting Data

Aybala Karakaya: Final Report

46



Selbi Ereshova: First Demo, Final Demo

Zehra Erdem: Project Specification Report, Analysis and Requirement Report

9. References
[1] “Google scholar.” [Online]. Available: https://scholar.google.com/. [Accessed:

10-Mar-2023].

[2] “Literature map software for Lit Reviews & Research,” Litmaps. [Online].

Available: https://www.litmaps.com/. [Accessed: 10-May-2023].

47



48



49


